

Predicting Dementia from Spontaneous Speech using Large Language Models Felix Agbavor, Hualou Liang*

School of Biomedical Engineering, Science and Health System, Drexel University PennAITech AD/ADRD Focus Pilot Core

GOALS

- Use spontaneous speech to detect Alzheimer's disease for future application in precision medicine
- Encode speech data into word ٠ embeddings as inputs to Machine Learning models
- Benchmark the performance of large ٠ language models (e.g., ChatGPT) against current acoustic methods

DATA PREPROCESSING

*n = 1024 (Ada), 2048(Babbage), 4096(Curie), 12288(Davinci)

Results				
MMSE Scores Prediction				
		Model	10-Fold CV	Test
	Acoustic	SVR	7.049	6.285
		LR	9.946	10.369
	Ada	SVR	6.096	5.631
		LR	6.851	6.798
	Babbage	SVR	5.976	5.499
		LR	5.893	5.915
RMSE scores (lower is better)				

• SVC 10-Fold CV metrics – AD Detection Accuracy Precision Recall 0.6718 0.6779 Acoustic 0.6972 Ada 0.7880 0.7979 0.8185 0.8044 Babbage 0.8016 0.8234 0.8121 0.8286 0.8679 Curie 0.8271 0.8457 0.9339

• Communities between AD and Control Control, communities: 9, mod: 0.6132

Acknowledgements

Davinci

Work reported here was partly supported by National Institute on Aging grant P30AG073105 and run on hardware supported by Drexel's University Research Computing Facility.

RESULTS