An Equitable ML-based Music Intervention for At-risk Older Adults Jennifer Rae Myers^{1,2}, Chelsea S. Brown^{1,3}, Luna Dziewietin⁴, Ozel Yilmazel⁴ & Virginia Partridge⁴

SingFit

¹Musical Health Technologies, LLC; ²University of Maryland, College Park; ³Northwestern University; ⁴University of Massachusetts, Amherst, Center for Data Science MassAITC AD/ADRD Focus Pilot Core

Introduction

The adoption of digital health interventions has shown promise in reducing cognitive-related health disparities in rural communities.¹ However, rural communities are often underrepresented in the development of digital health tools for cognitive and mental health.²

SingFit STUDIO (Fig.1), a therapeutic music mHealth app, was developed to increase accessibility to music-based interventions which have been shown to provide many health benefits for individuals with dementia.³ To ensure SingFit is a culturally relevant tool for better therapeutic acceptability and engagement, the purpose of this project is to develop an intelligent recommendation system capable of identifying the optimal therapeutic music for rural-residing older adults at-risk for dementia.

Specific Aims

- 1. Develop culturally inclusive user personas
- 2. Design a data-driven recommendation system
- 3. Assess acceptability of personalized therapeutic music sessions

Expected Outcomes

- 1. Creation of three distinct user personas
- 2. 80% improvement in the evaluation metrics using the machine learning (ML) model
- 3. 85% or higher user acceptability score for recommended songs among rural-residing participants

Design & Methodology

Phase I – Data collection and preprocessing (Table 1)

- 1000 US-based participants, at least 55 years of age with or without an endorsement of known risk factors for dementia
- Participants rate a 5-song "Reduce Depression" playlist on perceived benefit, sentiment, relevance, and preference
- Demographic data and musical preferences were also collected

Phase II – ML Implementation and Evaluation (Figs 2-3)

- Development of a Knowledge Graph Embeddings (KGE) model using Phase I data
- 200 new rural-residing participants recruited to test model

Recommendation metrics

- Evaluation: Root Mean Square Error (RMSE) and Normalized Discounted Cumulative Gain (NDCG)
- Acceptability: Group mean score from 5-point ratings on sentiment, relevance, and benefit of a 5-song playlist

Fig 1. The SingFit mHealth App Ta	able 1. Pa
SingFit STUDIO Let's begin! We'we created a playlist that has 6 We'l check-in a few times during this session and will give you pranticipant. The first song in your playlist is MY GIRL. Ask your participant if they would like to listen to this song. YES PICK NEW SONG VE Back	Characteris Mean Age (S Race White Black or Afric American Inc More than or Prefer Not To Ethnicity Not Hispanic Hispanic or L
SingFit STUDIO is specifically designed for older adult health and utilizes expert tailored music algorithms based on an individual's cognitive status, therapeutic goals, and musical preferences. The app provides guided conversation prompts throughout the session for meaning conversations and reminiscence. Lastly, SingFit STUDIO includes an auditory cue prompter and adjustable song tracks.	Sex Female Male Prefer Not To Education Education S Diploma HS Diploma Professional Associate Bachelor's de Master's dee
Fig 2. Architecture & Data Flow The ML development process (below) involves data preparation, configurable experiments to train the model, and building the initial recommender prototype for further testing and and refinement.	Doctorate Prefer Not To Residence Rural Suburban Urban
Data (usually file or database) Script or Jackaden User & Survey Data User & Survey Data	le Experimental Hyperparameters Train Graph Embedding Model Train Start: Recommendation

This work is funded by the National Institutes of Health, under grant P30AG073107. The authors would also like to thank MassAITC for their support and the participants for their time.

ighlights

le 1. Participants' Characteristics

$h_{\text{orestorictic}}$ (NL $-$ 400)	
naracterístic (N = 498)	Π
lean Age (SD)	62.69 (<i>6.25</i>)
ace	
Vhite	406
lack or African American	59
merican Indian / Alaskan Native	4
lore than one race	11
refer Not To Say	2
thnicity	
ot Hispanic or Latino	468
ispanic or Latino	25
refer Not To Say	5
ex	
emale	303
1ale	193
refer Not To Say	2
ducation	
HS Diploma	13
S Diploma or equivalent	98
rofessional Certification	41
ssociate	80
achelor's degree	147
laster's degree	92
octorate	25
refer Not To Say	2
esidence	
ural	105
uburban	270
rban	123

KGE is a machine learning technique that uses vector representations of entities (e.g., songs) and relationships (e.g., similar genres) in a knowledge graph to capture their meaning and predict related information (e.g., song recommender).

Artists

Musical Features

Implications

Despite the promise of digital health tools, there are still significant challenges that are often overlooked regarding their relevance to distinct contexts such as underserved, rural areas. Results from this

• Understand rural users' engagement needs and preferences

• Support at-risk older adults in rural communities seeking ways to

Minimize psychosocial and environmental barriers to engagement

Users

Scan the QR Code to learn more about the Pilot.

References

Campitelli, A., Gills, J. L., Jones, M.D., Paulson, S., Myers, J. R., Bryk, K., Madero, E. N., Glenn, J. M., Rodgers, C. H., Kempkes, J. A., & Gray, M. (2022). The effect of a digital health coaching and health education protocol on cognition in adults Alzheimer's. *GeroScience*, 45(2), 1147-1159. for https://doi.org/10.1007/s11357-022-00711-3

Deoni, S. C., D'Sa, V., Volpe, A., Beauchemin, J., Croff, J. M., Elliott, A. J., Pini, N., Lucchini, M., & Fifer, W. P. (2022). Remote and at-home data collection: Considerations for the NIH healthy brain and cognitive development (HBCD) Developmental Cognitive Neuroscience, 54, 101059. https://doi.org/10.1016/j.dcn.2022.101059

Brown, C. S., & Myers, J. M. (2022). Digital Technology Supports Therapeutic for Cognitive Health & Wellbeing. HPHR, 62. https://doi.org/10.54111/0001/JJJ9